dr. Arroyo Cardoso

Assistant Professor
Electronic Instrumentation (EI), Department of Microelectronics

Expertise: Sensors & actuators physics, micro- & nano-fabrication, material science, CMOS monolithic integration of different technologies. Main applications: biosensors for Lab-on-a-Chip, implantable, wearable devices.

Biography

Filipe Cardoso was born in Lisbon, Portugal, in 1982. He graduated in Physics Engineering at Instituto Superior Técnico – University of Lisbon in 2005. In 2011, Filipe obtained his PhD in Physics Engineering at the same university. His thesis was on magnetoresistive biosensors for Lab-on-a-Chip applications. During his first Postdoctorate at INESC-MN (Lisbon, Portugal), Filipe further developed this technology and transferred it to a startup company (Magnomics) that he co-founded in 2014. He served Magnomics as CEO and CTO, aiming to bring magnetoresistive biosensor technology into the animal health market. In 2018, he joined the Bioelectronic Systems Laboratory at Columbia University, New York, USA as a research scientist and developed CMOS-based implantable devices. As of November 2022, Filipe joined Delft University of Technology as an Assistant Professor.

His research interests focus on CMOS-based implantable/wearable devices for health monitoring. His main research lines are in:

  • Novel molecular biosensors for implants and wearables
  • New transducers technologies for wireless powering and communication of implants
  • Miniaturization of implants/wearables using micro-/nano-fabrication techniques and CMOS technology aiming for minimal invasiveness.

BSc, MSc, PhD, and Postdocs students interested in working on implantable/wearable devices are very welcome to contact me. I am always open to new ideas and project opportunities!

EE2G1 Electrical Engineering for the Next Generation

BSc 2nd year project

ET4260 Microsystem integration

Education history

EE1P11 Classical and Quantum Mechanics

(not running) "Classical and Quantum Mechanics" (EE1P11) teaches the basic elements of physics that are required to become an electrical engineer.

  1. Electronic Platforms and Signal Processing for Magnetoresistive-Based Biochips
    Germano, José; Costa, Tiago; Cardoso, Filipe Arroyo; Amaral, José; Cardoso, Susana; Freitas, Paulo P; Piedade, Moisés S;
    In Handbook of Biochips: Integrated Circuits and Systems for Biology and Medicine,
    Springer New York New York, NY, 2022.

  2. A Mechanically Flexible, Implantable Neural Interface for Computational Imaging and Optogenetic Stimulation Over 5.4×5.4 mm 2 FoV
    Moazeni, Sajjad; Pollmann, Eric H; Boominathan, Vivek; Cardoso, Filipe Arroyo; Robinson, Jacob T; Veeraraghavan, Ashok; Shepard, Kenneth L;
    IEEE Transactions on Biomedical Circuits and Systems,
    Volume 15, Issue 6, pp. 1295-1305, 2021.

  3. An integrated 2D ultrasound phased array transmitter in CMOS with pixel pitch-matched beamforming
    Costa, Tiago; Shi, Chen; Tien, Kevin; Elloian, Jeffrey; Cardoso, Filipe Arroyo; Shepard, Kenneth L;
    IEEE Transactions on Biomedical Circuits and Systems,
    Volume 15, Issue 4, pp. 731-742, 2021.

  4. A Mechanically Flexible Implantable Neural Interface for Computational Imaging and Optogenetic Stimulation over 5.4×5.4 mm 2 FoV
    Moazeni, Sajjad; Pollmann, Eric H.; Boominathan, Vivek; Cardoso, Filipe Arroyo; Robinson, Jacob T.; Veeraraghavan, Ashok; Shepard, Kenneth L.;
    In 2021 IEEE International Solid- State Circuits Conference (ISSCC),
    pp. 288-290, 2021. DOI: 10.1109/ISSCC42613.2021.9365796

  5. A 0.72 nW, 1 sample/s fully integrated pH sensor with 65.8 LSB/pH sensitivity
    Zhang, Yihan; Cardoso, Filipe Arroyo; Shepard, Kenneth L;
    In 2020 IEEE Symposium on VLSI Circuits,
    IEEE, pp. 1-2, 2020.

  6. Go with the flow: advances and trends in magnetic flow cytometry
    Soares, Rita; Martins, Verónica C; Macedo, Rita; Cardoso, Filipe Arroyo; Martins, Sofia AM; Caetano, Diogo M; Fonseca, Pedro H; Silvério, Vânia; Cardoso, Susana; Freitas, Paulo P;
    Analytical and bioanalytical chemistry,
    Volume 411, pp. 1839-1862, 2019.

  7. Biosensors for on-farm diagnosis of mastitis
    Martins, Sofia AM; Martins, Ver{\'o}nica C; Cardoso, Filipe Arroyo; Germano, José; Rodrigues, Mónica; Duarte, Carla; Bexiga, Ricardo; Cardoso, Susana; Freitas, Paulo P;
    Frontiers in bioengineering and biotechnology,
    Volume 7, pp. 186, 2019.

  8. Sensing magnetic nanoparticles
    Sandhu, Adarsh; Southern, Paul; de Freitas, Susana Cardoso; Knudde, Simon; Cardoso, Filipe Arroyo; Freitas, Paulo P; Kurlyandskaya, Galina V;
    In Magnetic Nanoparticles in Biosensing and Medicine,
    Cambridge University Press, 2019.

  9. A CMOS front-end with integrated magnetoresistive sensors for biomolecular recognition detection applications
    Costa, Tiago; Cardoso, Filipe Arroyo; Germano, José; Freitas, Paulo P; Piedade, Mois{\'e}s S;
    IEEE transactions on biomedical circuits and systems,
    Volume 11, Issue 5, pp. 988-1000, 2017.

  10. Lab-on-chip devices: gaining ground losing size
    Romao, Veronica C; Martins, Sofia AM; Germano, Jose; Cardoso, Filipe Arroyo; Cardoso, Susana; Freitas, Paulo P;
    ACS nano,
    Volume 11, Issue 11, pp. 10659-10664, 2017.

  11. Ultra-low temperature FOWLP process for the embedding of low thermal budget sensors and components using SU-8 as dielectric
    Pinto, Raquel; Cardoso, Andréand Ribeiro, Sara; Brandão, Carlos; Cardoso, Filipe Arroyo; Antunes, M; Gaspar, J; Gill, R; Fonseca, H; Costa, M;
    In 2017 IEEE 67th Electronic Components and Technology Conference (ECTC),
    IEEE, pp. 292-299, 2017.

  12. Monolithic device combining CMOS with magnetoresistive sensors
    Cardoso, Filipe Arroyo; Da Costa, Tiago Miguel Lopes Marta; Germano, José António Henriques; Piedade, Moisés Simões;
    February~14 2017. US Patent 9,567,626.

  13. Implementing a strategy for on-chip detection of cell-free DNA fragments using GMR sensors: A translational application in cancer diagnostics using ALU elements
    Dias, TM; Cardoso, Filipe Arroyo; Martins, SAM; Martins, VC; Cardoso, S; Gaspar, JF; Monteiro, G; Freitas, PP;
    Analytical Methods,
    Volume 8, Issue 1, pp. 119-128, 2016.

  14. Advanced NDT inspection tools for titanium surfaces based on high-performance magnetoresistive sensors
    Franco, Fernando; Cardoso, Filipe Arroyo; Rosado, Luís S; Ferreira, Ricardo; Cardoso, Susana; Piedade, Moisés; Freitas, Paulo P;
    IEEE Transactions on Magnetics,
    Volume 53, Issue 4, pp. 1-5, 2016.

  15. Detecting antibody-labeled BCG MNPs using a magnetoresistive biosensor and magnetic labeling technique
    Barroso, Teresa RG; Martins, Verónica C; Cardoso, Filipe Arroyo; Cardoso, Susana; Pedrosa, Jorge; Correia-Neves, Margarida; Rivas, Jos{\'e}; Freitas, Paulo P;
    In Journal of Nano Research,
    Trans Tech Publications Ltd, pp. 92-103, 2016.

  16. Design and optimization of a CMOS front-end for magnetoresistive sensor based biomolecular recognition detection
    Costa, Tiago; Germano, Jose; Piedade, Moises S; Cardoso, Filipe Arroyo; Freitas, Paulo P;
    In 2016 IEEE International Symposium on Circuits and Systems (ISCAS),
    IEEE, pp. 2859-2862, 2016.

  17. Magnetic counter for Group B Streptococci detection in milk
    Duarte, Carla Margarida; Fernandes, Ana Carolina; Cardoso, Filipe Arroyo; Bexiga, Ricardo; Cardoso, Susana Freitas; Freitas, Paulo JP;
    IEEE Transactions on Magnetics,
    Volume 51, Issue 1, pp. 1-4, 2015.

  18. Real-time monitoring of magnetic nanoparticles diffusion in lateral flow microporous membrane using spin valve sensors
    Chicharo, Alexandre; Cardoso, Filipe Arroyo; Cardoso, Susana; Freitas, Paulo JP;
    IEEE Transactions on Magnetics,
    Volume 51, Issue 1, pp. 1-4, 2015.

  19. Magnetic-based biomolecule detection using giant magnetoresistance sensors
    Kokkinis, G; Jamalieh, M; Cardoso, Filipe Arroyo; Cardoso, S; Keplinger, F; Giouroudi, I;
    Journal of Applied Physics,
    Volume 117, Issue 17, pp. 17B731, 2015.

  20. A novel approach for detection and quantification of magnetic nanomarkers using a spin valve GMR-integrated microfluidic sensor
    Devkota, J; Kokkinis, G; Berris, T; Jamalieh, M; Cardoso, S; Cardoso, Filipe Arroyo; Srikanth, Hariharan; Phan, Manh-Huong; Giouroudi, I;
    RSC Advances,
    Volume 5, Issue 63, pp. 51169-51175, 2015.

  21. Magnetic microfluidic platform for biomedical applications using magnetic nanoparticles
    Stipsitz, Martin; Kokkinis, Georgios; Gooneratne, Chinthaka; Kosel, Jurgen; Cardoso, Susana; Cardoso, Filipe Arroyo; Giouroudi, Ioanna;
    In Key Engineering Materials,
    Trans Tech Publications Ltd, pp. 207-210, 2015.

  22. GMR microfluidic biosensor for low concentration detection of Nanomag-D beads
    Devkota, J; Kokkinis, G; Jamalieh, M; Phan, MH; Srikanth, H; Cardoso, S; Cardoso, Filipe Arroyo; Giouroudi, Ioanna;
    In Bio-MEMS and Medical Microdevices II,
    SPIE, pp. 167-173, 2015.

  23. Magnetic tunnel junction based eddy current testing probe for detection of surface defects
    Cardoso, Filipe Arroyo; Rosado, L; Ferreira, R; Paz, E; Cardoso, S; Ramos, PM; Piedade, M; Freitas, PP;
    Journal of Applied Physics,
    Volume 115, Issue 17, pp. 17E516, 2014.

  24. Microfluidics for the rapid detection of pathogens using giant magnetoresistance sensors
    Kokkinis, Georgios; Cardoso, Susana F; Cardoso, Filipe Arroyo; Giouroudi, Ioanna;
    IEEE Transactions on Magnetics,
    Volume 50, Issue 11, pp. 1-4, 2014.

  25. A bacteriophage detection tool for viability assessment of Salmonella cells
    Fernandes, E; Martins, VC; Nóbrega, Cláudia; Carvalho, CM; Cardoso, Filipe Arroyo; Cardoso, S; Dias, J; Deng, D; Kluskens, LD; Freitas, PP; others;
    Biosensors and Bioelectronics,
    Volume 52, pp. 239-246, 2014.

  26. MgO-based magnetic tunnel junction sensors array for non-destructive testing applications
    Guo, DW; Cardoso, Filipe Arroyo; Ferreira, R; Paz, E; Cardoso, S; Freitas, PP;
    Journal of Applied Physics,
    Volume 115, Issue 17, pp. 17E513, 2014.

  27. An in-depth noise model for giant magnetoresistance current sensors for circuit design and complementary metal-oxide-semiconductor integration
    Roldán, A; Roldán, JB; Reig, C; Cardoso, S; Cardoso, Filipe Arroyo; Ferreira, R; Freitas, PP;
    Journal of Applied Physics,
    Volume 115, Issue 17, pp. 17E514, 2014.

  28. Eddy currents testing probe with magneto-resistive sensors and differential measurement
    Rosado, Luis S; Cardoso, Filipe Arroyo; Cardoso, Susana; Ramos, Pedro M; Freitas, Paulo P; Piedade, Moisés;
    Sensors and Actuators A: Physical,
    Volume 212, pp. 58-67, 2014.

  29. Lab-on-chip cytometry based on magnetoresistive sensors for bacteria detection in milk
    Fernandes, Ana C; Duarte, Carla M; Cardoso, Filipe Arroyo; Bexiga, Ricardo; Cardoso, Susana; Freitas, Paulo P;
    Sensors,
    Volume 14, Issue 8, pp. 15496-15524, 2014.

  30. Improved magnetic tunnel junctions design for the detection of superficial defects by eddy currents testing
    Cardoso, Filipe Arroyo; Rosado, Luís S; Franco, Fernando; Ferreira, Ricardo; Paz, Elvira; Cardoso, Susana F; Ramos, Pedro M; Piedade, Moises; Freitas, Paulo JP;
    IEEE Transactions on Magnetics,
    Volume 50, Issue 11, pp. 1-4, 2014.

  31. Dynamical detection of magnetic nanoparticles in paper microfluidics with spin valve sensors for point-of-care applications
    Chicharo, Alexandre; Cardoso, Filipe Arroyo; Cardoso, Susana; Freitas, Paulo P;
    IEEE Transactions on Magnetics,
    Volume 50, Issue 11, pp. 1-4, 2014.

  32. Customized design of magnetic beads for dynamic magnetoresistive cytometry
    Vila, Ana; Martins, Veronica C; Chícharo, Alexandre; Rodriguez-Abreu, Carlos; Fernandes, Ana Carolina; Cardoso, Filipe Arroyo; Cardoso, Susana; Rivas, Jose; Freitas, Paulo;
    IEEE Transactions on Magnetics,
    Volume 50, Issue 11, pp. 1-4, 2014.

  33. Detection of micrometric surface defects in titanium using magnetic tunnel junction sensors
    Rosado, LS; Cardoso, Filipe Arroyo; Franco, F; Ferreira, R; Paz, E; Cardoso, S; Ramos, PM; Freitas, PP; Piedade, M;
    In Proceedings of the 11th European Conference on Non-Destructive Testing (ECNDT’14),
    2014.

  34. Results of MR based ET probes for buried flaw detection over different metallic materials
    Ribes, Belén; SERGEEVA-CHOLLET, Natalia; CARDOSO, Filipe Arroyo; BRAGADO, Leticia; FERMON, Claude; CARDOSO, Susana; FREITAS, Paulo P; PIEDADE, Moisés S; ROSADO, Luis;
    In 11th European Conference on Non-Destructive Testing (ECNDT 2014),
    pp. 6-10, 2014.

  35. Giant Magnetoresistance (GMR) sensors for 0.35 $\mu$m CMOS technology sub-mA current sensing
    de Marcellis, Andrea; Reig, C; Cubells, MD; Madrenas, J; Cardoso, Filipe Arroyo; Cardoso, S; Freitas, PP;
    In SENSORS, 2014 IEEE,
    IEEE, pp. 444-447, 2014.

  36. Microfluidic Diagnostic System for the Rapid Detection of Pathogens using Giant Magnetoresistance Sensors
    Kokkinis, G; Cardoso, Susana F; Cardoso, Filipe Arroyo; Giouroudi, Ioanna;
    In Book of Abstracts,
    pp. 3388-3389, 2014.

  37. Magnetic-Based Biomolucule Detection using GMR Sensors
    Kokkinis, G; Jamalieh, Murad Aziz; Cardoso, Filipe Arroyo; Cardoso, Susana F; Keplinger, Franz; Giouroudi, Ioanna;
    In Abstracts,
    pp. 422, 2014.

  38. Magnetic tunnel junction sensors with pTesla sensitivity for biomedical imaging
    Cardoso, S; Gameiro, L; Leitao, DC; Cardoso, Filipe Arroyo; Ferreira, R; Paz, E; Freitas, PP;
    In Smart Sensors, Actuators, and MEMS VI,
    SPIE, pp. 315-322, 2013.

  39. CMOS instrumentation system for matrix-based magnetoresistive biosensors
    Costa, Tiago; Piedade, Moises S; Cardoso, Filipe Arroyo; Freitas, Paulo P;
    In 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC),
    IEEE, pp. 1315-1318, 2013.

  40. Eddy current probes based on magnetoresistive array sensors as receivers
    Sergeeva-Chollet, Natalia; Pelkner, Matthias M; Erthner, Thomas M; Kreutzbruck, Marc M; Fermon, Claude M; Decitre, Jean-Marc M; Paul, Johannes; Cardoso, Filipe Arroyo; Cardoso, Susana; Freitas, Paulo M; others;
    In 19 th World Conference on Non-Destructive Testing 2016,
    2013.

  41. Spintronic platforms for biomedical applications
    Freitas, PP; Cardoso, Filipe Arroyo; Martins, VC; Martins, SAM; Loureiro, J; Amaral, J; Chaves, RC; Cardoso, S; Fonseca, LP; Sebastião, AM; others;
    Lab on a Chip,
    Volume 12, Issue 3, pp. 546-557, 2012.

  42. Quantitative biomolecular sensing station based on magnetoresistive patterned arrays
    Serrate, David; De Teresa, JM; Marquina, Clara; Marzo, J; Saurel, D; Cardoso, Filipe Arroyo; Cardoso, S; Freitas, PP; Ibarra, MR;
    Biosensors and Bioelectronics,
    Volume 35, Issue 1, pp. 206-212, 2012.

  43. GMR sensors and magnetic nanoparticles for immuno-chromatographic assays
    Marquina, C; De Teresa, JM; Serrate, D; Marzo, J; Cardoso, Filipe Arroyo; Saurel, D; Cardoso, S; Freitas, PP; Ibarra, MR;
    Journal of Magnetism and Magnetic Materials,
    Volume 324, Issue 21, pp. 3495-3498, 2012.

  44. Integration of magnetoresistive biochips on a CMOS circuit
    Cardoso, Filipe Arroyo; Costa, T; Germano, J; Cardoso, S; Borme, J; Gaspar, J; Fernandes, JR; Piedade, MS; Freitas, PP;
    IEEE transactions on magnetics,
    Volume 48, Issue 11, pp. 3784-3787, 2012.

  45. Waterborne pathogen detection using a magnetoresistive immuno-chip
    Martins, Sofia SA; Martins, Verónica C; Cardoso, Filipe Arroyo; Freitas, Paulo P; Fonseca, Luís P;
    Molecular biological technologies for ocean sensing,
    pp. 263-288, 2012.

  46. Self-powered, hybrid antenna-magnetoresistive sensor for magnetic field detection
    Macedo, R; Cardoso, Filipe Arroyo; Cardoso, S; Freitas, PP; Germano, J; Piedade, MS;
    Applied Physics Letters,
    Volume 98, Issue 10, pp. 103503, 2011.

  47. On-chip measurement of the Brownian relaxation frequency of magnetic beads using magnetic tunneling junctions
    Donolato, Marco; Sogne, E; Dalslet, Bjarke Thomas; Cantoni, Matteo; Petti, Daniela; Cao, J; Cardoso, Filipe Arroyo; Cardoso, S; Freitas, PP; Hansen, Mikkel Fougt; others;
    Applied Physics Letters,
    Volume 98, Issue 7, pp. 073702, 2011.

  48. Optimization and integration of magnetoresistive sensors
    Freitas, Paulo P; Cardoso, Susana; Ferreira, Ricardo; Martins, Verónica C; Guedes, André; Cardoso, Filipe Arroyo; Loureiro, Joana; Macedo, Rita; Chaves, Rui C; Amaral, José;
    In Spin,
    World Scientific Publishing Company, pp. 71-91, 2011.

  49. Challenges and trends in the development of a magnetoresistive biochip portable platform
    Martins, Verónica C; Germano, José; Cardoso, Filipe Arroyo; Loureiro, Joana; Cardoso, Susana; Sousa, Leonel; Piedade, Moisés; Fonseca, Luís P; Freitas, PP;
    Journal of Magnetism and Magnetic Materials,
    Volume 322, Issue 9-12, pp. 1655-1663, 2010.

  50. Picomolar detection limit on a magnetoresistive biochip after optimization of a thiol-gold based surface chemistry
    Martins, VC; Cardoso, Filipe Arroyo; Freitas, PP; Fonseca, LP;
    Journal of nanoscience and nanotechnology,
    Volume 10, Issue 9, pp. 5994-6002, 2010.

  51. Spintronic microfluidic platform for biomedical and environmental applications
    Cardoso, Filipe Arroyo; Martins, VC; Fonseca, LP; Germano, J; Sousa, LA; Piedade, MS; Freitas, PP;
    In Fourth European Workshop on Optical Fibre Sensors,
    SPIE, pp. 55-57, 2010.

  52. A portable and autonomous magnetic detection platform for biosensing
    Germano, José; Martins, Verónica C; Cardoso, Filipe Arroyo; Almeida, Teresa M; Sousa, Leonel; Freitas, Paulo P; Piedade, Moisés S;
    Sensors,
    Volume 9, Issue 6, pp. 4119-4137, 2009.

  53. On the modeling of new tunnel junction magnetoresistive biosensors
    de Almeida, Teresa Mendes; Piedade, Moisés S; Sousa, Leonel Augusto; Germano, José; Lopes, Paulo AC; Cardoso, Filipe Arroyo; Freitas, Paulo Peixeiro;
    IEEE Transactions on Instrumentation and Measurement,
    Volume 59, Issue 1, pp. 92-100, 2009.

  54. Femtomolar limit of detection with a magnetoresistive biochip
    Martins, VC; Cardoso, Filipe Arroyo; Germano, J; Cardoso, S; Sousa, L; Piedade, M; Freitas, PP; Fonseca, LP;
    Biosensors and Bioelectronics,
    Volume 24, Issue 8, pp. 2690-2695, 2009.

  55. Magnetoresistive biochip-based portable platforms for biomolecular recognition detection
    Martins, V; Cardoso, Filipe Arroyo; Freitas, P; Germano, J; Cardoso, S; Sousa, L; Piedade, M; Fonseca, L;
    New Biotechnology,
    Issue 25, pp. S358-S359, 2009.

  56. Measuring and extraction of biological information on new handheld biochip-based microsystem
    Lopes, Paulo AC; Germano, José; de Almeida, Teresa Mendes; Sousa, Leonel Augusto; Piedade, Moisés S; Cardoso, Filipe Arroyo; Ferreira, Hugo Alexandre; Freitas, Paulo P;
    IEEE Transactions on Instrumentation and Measurement,
    Volume 59, Issue 1, pp. 56-62, 2008.

  57. Detection of 130 nm magnetic particles by a portable electronic platform using spin valve and magnetic tunnel junction sensors
    Cardoso, Filipe Arroyo; Germano, J; Ferreira, R; Cardoso, S; Martins, VC; Freitas, PP; Piedade, MS; Sousa, L;
    Journal of Applied Physics,
    Volume 103, Issue 7, pp. 07A310, 2008.

  58. Integrated spintronic platforms for biomolecular recognition detection
    Martins, VC; Cardoso, Filipe Arroyo; Loureiro, J; Mercier, M; Germano, J; Cardoso, S; Ferreira, R; Fonseca, LP; Sousa, L; Piedade, MS; others;
    In AIP Conference Proceedings,
    American Institute of Physics, pp. 150-175, 2008.

  59. Magnetoresistive sensors
    Freitas, PP; Ferreira, R; Cardoso, S; Cardoso, Filipe Arroyo;
    Journal of Physics: Condensed Matter,
    Volume 19, Issue 16, pp. 165221, 2007.

  60. Noise characteristics and particle detection limits in diode + MTJ matrix elements for biochip applications
    Cardoso, Filipe Arroyo; Ferreira, R; Cardoso, S; Conde, JP; Chu, V; Freitas, PP; Germano, J; Almeida, T; Sousa, L; Piedade, MS;
    IEEE transactions on magnetics,
    Volume 43, Issue 6, pp. 2403-2405, 2007.

  61. Nanotechnology and the Detection of Biomolecular Recognition Using Magnetoresistive Transducers
    Freitas, Paulo P; Ferreira, Hugo A; Cardoso, Filipe Arroyo; Cardoso, Susana; Ferreira, Ricardo; Almeida, José; Guedes, Andre; Chu, Virginia; Conde, João P; Martins, Verónica; others;
    In A Portrait of State-of-the-Art Research at the Technical University of Lisbon,
    Springer Netherlands, pp. 3-22, 2007.

  62. A new handheld biochip-based microsystem
    Lopes, Paulo Alexandre Crisóstomo; Germano, J; Almeida, TM; Sousa, Leonel; Piedade, Moisés Simões; Cardoso, Filipe Arroyo; Ferreira, Hugo Alexandre; Freitas, Paulo P;
    In 2007 IEEE International Symposium on Circuits and Systems,
    IEEE, pp. 2379-2382, 2007.

  63. Generic architecture designed for biomedical embedded systems
    Sousa, Leonel; Piedade, M; Germano, J; Almeida, T; Lopes, P; Cardoso, Filipe Arroyo; Freitas, P;
    In Embedded System Design: Topics, Techniques and Trends,
    Springer US, pp. 353-362, 2007.

  64. A new hand-held microsystem architecture for biological analysis
    Piedade, Moisés; Sousa, Leonel Augusto; de Almeida, Teresa Mendes; Germano, José; da Costa, Bertinho d'Andrade; Lemos, João Miranda; Freitas, Paulo Peixeiro; Ferreira, Hugo A; Cardoso, Filipe Arroyo;
    IEEE Transactions on Circuits and Systems I: Regular Papers,
    Volume 53, Issue 11, pp. 2384-2395, 2006.

  65. Magnetoresistive DNA chips based on ac field focusing of magnetic labels
    Ferreira, HA; Cardoso, Filipe Arroyo; Ferreira, R; Cardoso, S; Freitas, PP;
    Journal of applied physics,
    Volume 99, Issue 8, pp. 08P105, 2006.

  66. Diode/magnetic tunnel junction cell for fully scalable matrix-based biochip
    Cardoso, Filipe Arroyo; Ferreira, HA; Conde, JP; Chu, V; Freitas, PP; Vidal, D; Germano, J; Sousa, L; Piedade, MS; Costa, BA; others;
    Journal of Applied Physics,
    Volume 99, Issue 8, pp. 08B307, 2006.

  67. Characterisation and modelling of a magnetic biosensor
    Almeida, TM; Piedade, MS; Cardoso, Filipe Arroyo; Ferreira, HA; Freitas, PP;
    In 2006 IEEE Instrumentation and Measurement Technology Conference Proceedings,
    IEEE, pp. 2007-2012, 2006.

  68. Microsystem for biological analysis based on magnetoresistive sensing
    Germano, J; Piedade, MS; Sousa, L; Almeida, TM; Lopes, P; Cardoso, Filipe Arroyo; Ferreira, HA; Freitas, PP;
    In XVIII International Measurement Confederation (IMEKO) World Congress,
    2006.

  69. Magnetoresistive biosensor modelling for biomolecular recognition,”
    Almeida, TM; Piedade, MS; Lopes, PC; Sousa, L; Germano, J; Cardoso, Filipe Arroyo; Ferreira, HA; Freitas, PP;
    In XVIII International Measurement Confederation World Congress,
    2006.

  70. Measurements and modelling of a magnetoresistive biosensor
    Almeida, TM; Piedade, MS; Germano, J; Lopes, PC; Sousa, L; Cardoso, Filipe Arroyo; Ferreira, H; Freitas, P;
    In 2006 IEEE Biomedical Circuits and Systems Conference,
    IEEE, pp. 41-44, 2006.

  71. Temperature modelling of a biochip for DNA analysis
    Costa, BA; Lemos, JM; Piedade, MS; Sousa, L; Almeida, T; Germano, J; Freitas, P; Ferreira, H; Cardoso, Filipe Arroyo;
    In 2006 14th Mediterranean Conference on Control and Automation,
    IEEE, pp. 1-5, 2006.

  72. Determination of biological expression signals on a new handheld biochip-based microsystem
    Lopes, P AC; Germano, J; Almeida, TM; Sousa, L; Piedade, MS; Cardoso, Filipe Arroyo; Ferreira, HA; Freitas, PP;
    In 2006 IEEE Biomedical Circuits and Systems Conference,
    IEEE, pp. 57-60, 2006.

  73. Scalable Magnetoresistive Biochips For Biomolecular recognition
    Cardoso, Filipe Arroyo; Ferreira, H; Freitas, P; Conde, J; Chu, V; Germano, J; Sousa, L; Piedade, M; Martins, V; Fonseca, L; others;
    In 2006 IEEE International Magnetics Conference (INTERMAG),
    IEEE, pp. 249-249, 2006.

  74. Architecture of a portable system based on a biochip for DNA recognition
    Piedade, M; Sousa, L; Germano, J; Lemos, J; Costa, B; Freitas, P; Ferreira, H; Cardoso, Filipe Arroyo; Vidal, D;
    In Proc. of the XX conference on Design of Circuits and Integrated Systems,
    2005.

  75. Temperature Simulation and Control of a Biochip for DNA Analysis
    Costa, BA; Lemos, JM; Piedade, MS; Sousa, L; Freitas, P; Cardoso, Filipe Arroyo; Vidal, D;
    In 44th IEEE Conference on Decision and Control,
    2004.

BibTeX support

Last updated: 5 Jun 2023