Ultra-X-treme: Ultrafast Ultrasound Imaging for Extended Diagnosis and Treatment of Vascular Disease
Publications
- A 2000-Volumes/s 3D Ultrasound Imaging Chip with Monolithically-Integrated 11.7x23.4mm2 2048-Element CMUT Array and Arbitrary-Wave TX Beamformer
Nuriel N.M. Rozsa; Zhao Chen; Taehoon Kim; Peng Guo; Yannick Hopf; Jason Voorneveld; Djalma Simoes dos Santos; Emile Noothout; Zu-Yao Chang; Chao Chen; Vincent A. Henneken; Nico de Jong; Hendrik J. Vos; Johan G. Bosch; Martin D. Verweij; Michiel A. P. Pertijs;
In Dig. Techn. Paper IEEE Symposium on VLSI Circuits (VLSI),
2024. Accepted. - A Tiled Ultrasound Matrix Transducer for Volumetric Imaging of the Carotid Artery
dos Santos, Djalma Simões; Fool, Fabian; Mozaffarzadeh, Moein; Shabanimotlagh, Maysam; Noothout, Emile; Kim, Taehoon; Rozsa, Nuriel; Vos, Hendrik J.; Bosch, Johan G.; Pertijs, Michiel A. P.; Verweij, Martin D.; de Jong, Nico;
Sensors,
Volume 22, Issue 24, pp. 1--23, 2022. DOI: 10.3390/s22249799
Abstract: ...
High frame rate three-dimensional (3D) ultrasound imaging would offer excellent possibilities for the accurate assessment of carotid artery diseases. This calls for a matrix transducer with a large aperture and a vast number of elements. Such a matrix transducer should be interfaced with an application-specific integrated circuit (ASIC) for channel reduction. However, the fabrication of such a transducer integrated with one very large ASIC is very challenging and expensive. In this study, we develop a prototype matrix transducer mounted on top of multiple identical ASICs in a tiled configuration. The matrix was designed to have 7680 piezoelectric elements with a pitch of 300 μm × 150 μm integrated with an array of 8 × 1 tiled ASICs. The performance of the prototype is characterized by a series of measurements. The transducer exhibits a uniform behavior with the majority of the elements working within the −6 dB sensitivity range. In transmit, the individual elements show a center frequency of 7.5 MHz, a −6 dB bandwidth of 45%, and a transmit efficiency of 30 Pa/V at 200 mm. In receive, the dynamic range is 81 dB, and the minimum detectable pressure is 60 Pa per element. To demonstrate the imaging capabilities, we acquired 3D images using a commercial wire phantom.
document - Large Matrix array aperture for 3D vascular imaging capture
Q. Colas; C. Bantignies; M. Perroteau; N. Porcher; S. Vassal; B. Guérif; T. Kim; J. G. Bosch; N. de Jong; M. D. Verweij; M. A. P. Pertijs; G. Férin; M. Flesch;
In Proc. IEEE International Ultrasonics Symposium (IUS),
2022. - Automated Characterization of Matrix Transducer Arrays using the Verasonics Imaging System
Djalma Simoes dos Santos; Fabian Fool; Taehoon Kim; Emile Noothout; Nuriel Rozsa; Hendrik J. Vos; Johan G. Bosch; Michiel A. P. Pertijs; Martin D. Verweij; Nico de Jong;
In Proc. IEEE International Ultrasonics Symposium (IUS),
2022. - Automated Characterization of Matrix Transducer Arrays using the Verasonics Imaging System
Djalma Simoes dos Santos; Fabian Fool; Taehoon Kim; Emile Noothout; Nuriel Rozsa; Hendrik J. Vos; Johan G. Bosch; Michiel A. P. Pertijs; Martin D. Verweij; Nico de Jong;
In Proc. IEEE International Ultrasonics Symposium (IUS),
2022. - Large Matrix array aperture for 3D vascular imaging capture
Q. Colas; C. Bantignies; M. Perroteau; N. Porcher; S. Vassal; B. Guérif; T. Kim; J. G. Bosch; N. de Jong; M. D. Verweij; M. A. P. Pertijs; G. Férin; M. Flesch;
In Smart Systems Integration Conference,
2022. abstract. - Design of an Ultrasound Transceiver ASIC with a Switching-Artifact Reduction Technique for 3-D Carotid Artery Imaging
T. Kim; F. Fool; D. Simoes dos Santos; Z. Y. Chang; E. Noothout; H. J. Vos; J. G. Bosch; M. D. Verweij; N. de Jong; M. A. P. Pertijs;
Sensors,
Volume 21, Issue 1, pp. 150, January 2021. DOI: 10.3390/s21010150
Abstract: ...
This paper presents an ultrasound transceiver application-specific integrated circuit (ASIC) directly integrated with an array of 12 × 80 piezoelectric transducer elements to enable next-generation ultrasound probes for 3D carotid artery imaging. The ASIC, implemented in a 0.18 µm high-voltage Bipolar-CMOS-DMOS (HV BCD) process, adopted a programmable switch matrix that allowed selected transducer elements in each row to be connected to a transmit and receive channel of an imaging system. This made the probe operate like an electronically translatable linear array, allowing large-aperture matrix arrays to be interfaced with a manageable number of system channels. This paper presents a second-generation ASIC that employed an improved switch design to minimize clock feedthrough and charge-injection effects of high-voltage metal–oxide–semiconductor field-effect transistors (HV MOSFETs), which in the first-generation ASIC caused parasitic transmissions and associated imaging artifacts. The proposed switch controller, implemented with cascaded non-overlapping clock generators, generated control signals with improved timing to mitigate the effects of these non-idealities. Both simulation results and electrical measurements showed a 20 dB reduction of the switching artifacts. In addition, an acoustic pulse-echo measurement successfully demonstrated a 20 dB reduction of imaging artifacts.
document - Integrated Transceivers for Emerging Medical Ultrasound Imaging Devices: A Review
C. Chen; M. Pertijs;
IEEE Open Journal of the Solid-State Circuits Society,
Volume 1, pp. 104-114, September 2021. DOI: 10.1109/OJSSCS.2021.3115398 - Experimental Investigation of the Effect of Subdicing on an Ultrasound Matrix Transducer
D. Simoes dos Santos; F. Fool; T. Kim; E. Noothout; H. J. Vos; J. G. Bosch; M. A. P. Pertijs; M. D. Verweij; N. de Jong;
In Proc. IEEE International Ultrasonics Symposium (IUS),
September 2021. DOI: 10.1109/ius52206.2021.9593315
Abstract: ...
Over the past decades, real-time three-dimensional (3D) medical ultrasound has attracted much attention since it enables clinicians to diagnose more accurately. This calls for ultrasound matrix transducers with a large number of elements, which can be interfaced with an application-specific integrated circuit (ASIC) for data reduction. An important aspect of the design of such a transducer is the geometry of each element, since it affects the mode of vibration and, consequently, the efficiency of the transducer. In this paper, we experimentally investigate the effect of subdicing on a piezoelectric (PZT) transducer. We fabricate and acoustically characterize a prototype PZT matrix transducer built on top of ASICs. The prototype transducer contains subdiced and non-subdiced elements, whose performance can be directly compared under the same conditions. Measurement results show that subdiced elements have a better performance compared to non-subdiced ones. Subdicing increases the peak pressure by 25%, raises the bandwidth by 10% and reduces the ringing time by 25%. - A 12×80 Element Ultrasound Transceiver ASIC With Enhanced Charge Injection Performance for 3-D Carotid Artery Imaging
T. Kim; F. Fool; E. Kang; Z. Y. Chang; E. Noothout; J. G. Bosch; M. D. Verweij; N. de Jong; M. Pertijs;
In Proc. IEEE International Ultrasonics Symposium (IUS),
September 2020. abstract.