dr. Du

Assistant Professor
Electronic Instrumentation (EI), Department of Microelectronics

Expertise: Energy-efficient circuits and systems, energy harvesting, wireless power transfer, power conversion ICs.

Themes: Power Management

Biography

Sijun Du received a B.Sc. degree (Hons.) in Electronic Engineering from Pierre and Marie Curie University (UPMC), Paris, France, in 2011, and an M.Sc. degree (Distinction) in Electrical & Electronic Engineering from Imperial College London, UK, in 2012. From 2012 to 2013, he was with the Lip6 laboratory at Pierre and Marie Curie University (UPMC). From 2013 to 2014, he was a digital IC design engineer in Shanghai, China. In October 2014, he joined the University of Cambridge, UK, for Ph.D. research, where he used less than three years to submit his thesis. In 2016, he did a three-month internship in the R&D department at Qualcomm Inc., San Diego, CA, USA. In 2018, he was a visiting scholar at Fudan University, China, for three months. From 2018 to 2020, he was a postdoctoral researcher at the Berkeley Wireless Research Center (BWRC), University of California, Berkeley, CA, USA. In 2020, he joined the Electronic Instrumentation Laboratory, Department of Microelectronics, Delft University of Technology, where he is now an Assistant Professor (tenured).

He is an IEEE Senior Member. He received the prestigious NWO VENI grant in the 2021 round (AES domain, 1st place in ranking). He is a co-recipient of the 2022 ICECS Best Student Paper award. He is a technical committee (TC) member of the IEEE Power Electronics Society (PELS) and IEEE Circuits and Systems Society (CASS). He serves as the review committee member and session chair in ISCAS 2020, ISCAS 2021, and ISCAS 2022. He is the subcommittee chair and session chair in ICECS 2022. He is a member of the 2023 ISSCC Student Research Preview (SRP) committee.

He has authored and co-authored more than 50 peer-reviewed technical papers and 3 patents. His current research is focused on energy-efficient integrated circuits and systems, including energy harvesting, wireless power transfer, and DC/DC converters used in autonomous wireless sensors for the Internet of Things (IoT), wearable electronics, biomedical devices, and microrobots.

EE4610 Digital IC Design

Analysis and design of digital systems with full comprehension of its performance, power dissipation, size and reliability.

  1. A 90.6% Efficient, 0.333 W/mm2 Power Density Direct 48V-to-1V Dual Inductor Hybrid Converter with Delay-line Based V2D Controller
    Hua, Y.; Lu, Q.; Li, S.; Zhao, B.; Du, S.;
    IEEE Transactions on Circuits and Systems II: Express Briefs,
    pp. 1-1, 2022. DOI: 10.1109/TCSII.2022.3219243

  2. A Crystal-Less Clock Generation Technique for Battery-Free Wireless Systems
    Chang, Z.; Zhang, Y.; Yang, C.; Luo, Y.; Du, S.; Chen, Y.; Zhao, B.;
    IEEE Transactions on Circuits and Systems I: Regular Papers,
    pp. 1-12, 2022. DOI: 10.1109/TCSI.2022.3201196

  3. An Output Bandwidth Optimized 200-Gb/s PAM-4 100-Gb/s NRZ Transmitter With 5-Tap FFE in 28-nm CMOS
    Wang, Z.; Choi, M.; Lee, K.; Park, K.; Liu, Z.; Biswas, A.; Han, J.; Du, S.; Alon, E.;
    IEEE Journal of Solid-State Circuits,
    Volume 57, Issue 1, pp. 21-31, 2022. DOI: 10.1109/JSSC.2021.3109562

  4. A Nanopower 95.6% Efficiency Voltage Regulator with Adaptive Supply-Switching for Energy Harvesting Applications
    Zou, Y.; Yue, X.; Du, S.;
    In 2022 IEEE International Symposium on Circuits and Systems (ISCAS),
    pp. 3557-3561, 2022. DOI: 10.1109/ISCAS48785.2022.9937775

  5. A Reconfigurable Cold-Startup SSHI Rectifier with 4X Lower Input Amplitude Requirement for Piezoelectric Energy Harvesting
    Yue, X.; Zou, Y.; Chen, Z.; Liang, J.; Du, S.;
    In 2022 IEEE International Symposium on Circuits and Systems (ISCAS),
    pp. 649-653, 2022. DOI: 10.1109/ISCAS48785.2022.9937838

  6. A Highly Efficient Fully Integrated Active Rectifier for Ultrasonic Wireless Power Transfer
    Yue, X.; Chen, Z.; Zou, Y.; Du, S.;
    In 2022 IEEE International Symposium on Circuits and Systems (ISCAS),
    pp. 531-535, 2022. DOI: 10.1109/ISCAS48785.2022.9937532

  7. Performance Enhancement with a Capacitor-Scaling Design for SSHC Piezoelectric Energy Harvesting Interfaces
    Zou, Y.; Du, S.;
    In 2022 IEEE International Symposium on Circuits and Systems (ISCAS),
    pp. 2758-2762, 2022. DOI: 10.1109/ISCAS48785.2022.9937764

  8. A Nano-power Wake-up Circuit for Energy-driven IoT Applications
    Teng, L.; Liang, J.; Du, S.;
    In 2022 IEEE International Symposium on Circuits and Systems (ISCAS),
    pp. 2383-2387, 2022. DOI: 10.1109/ISCAS48785.2022.9937295

  9. A 10-mV-Startup-Voltage Thermoelectric Energy Harvesting System With a Piezoelectric Starter
    Wang, R.; Liang, Y.; Du, S.;
    In 2022 IEEE International Symposium on Circuits and Systems (ISCAS),
    pp. 1482-1486, 2022. DOI: 10.1109/ISCAS48785.2022.9937554

  10. A PV-assisted 10-mV Startup Boost Converter for Thermoelectric Energy Harvesting
    Liang, Y.; Wang, R.; Chen, Z.; Du, S.;
    In 2022 IEEE International Symposium on Circuits and Systems (ISCAS),
    pp. 644-648, 2022. DOI: 10.1109/ISCAS48785.2022.9937311

  11. A Ring-Oscillator Sub-Sampling PLL With Hybrid Loop Using Generator-Based Design Flow
    Wang, Z.; Choi, M.; Wright, J.; Lee, K.; Liu, Z.; Yin, B.; Han, J.; Du, S.; Alon, E.;
    In 2022 IEEE International Symposium on Circuits and Systems (ISCAS),
    pp. 2881-2885, 2022. DOI: 10.1109/ISCAS48785.2022.9937615

  12. A 200Gb/s PAM-4 Transmitter with Hybrid Sub-Sampling PLL in 28nm CMOS Technology
    Wang, Z.; Choi, M.; Kwon, P.; Lee, K.; Yin, B.; Liu, Z.; Park, K.; Biswas, A.; Han, J.; Du, S.; Alon, E.;
    In 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits),
    pp. 34-35, 2022. DOI: 10.1109/VLSITechnologyandCir46769.2022.9830237

  13. Voltage Flip Efficiency Optimization of SSHC Rectifiers for Piezoelectric Energy Harvesting
    Yue, X.; Du, S.;
    In 2021 IEEE International Symposium on Circuits and Systems (ISCAS),
    pp. 1-5, 2021. DOI: 10.1109/ISCAS51556.2021.9401330

  14. An Automated and Process-Portable Generator for Phase-Locked Loop
    Wang, Z.; Choi, M.; Chang, E.; Wright, J.; Bae, W.; Du, S.; Liu, Z.; Narevsky, N.; Schmidt, C.; Biwas, A.; Nikolic, B.; Alon, E.;
    In 2021 58th ACM/IEEE Design Automation Conference (DAC),
    pp. 511-516, 2021. DOI: 10.1109/DAC18074.2021.9586318

BibTeX support

Last updated: 25 Nov 2022