MSc Y. Hopf

PhD student
Electronic Instrumentation (EI), Department of Microelectronics

Expertise: Ultrasound ASICs, SAR Analog to digital converters

Themes: Smart Ultrasound

Biography

Yannick Hopf was born in Seligenstadt, Germany in 1991. He received his B.Sc. and M.Sc. qualification in electrical engineering with specialization in integrated systems from Technische Universität Darmstadt, Germany, in 2014 and 2017 respectively. His performance was honoured with the price for best degree in his year.
Since June 2018, Mr. Hopf is a Ph.D. candidate at the Electronic Instrumentation Laboratory of TU Delft where he works towards enabling 3D intra-cardiac echography from the tip of a catheter. His current research interests include high voltage circuit design and ultrasound ASICs.

3D Intra-Cardiac Echography

In this project, novel transducers, integrated electronics and visualization methods will be developed that will enable real-time 3D ultrasound imaging at the tip of a catheter

  1. A Compact Integrated High-Voltage Pulser Insensitive to Supply Transients for 3D Miniature Ultrasound Probes
    Yannick M. Hopf; Boudewine Ossenkoppele; Mehdi Soozande; Emile Noothout; Zu-Yao Chang; Hendrik J. Vos; Johan G. Bosch; Martin D. Verweij; Nico de Jong; Michiel A. P. Pertijs;
    IEEE Solid-State Circuits Letters,
    Volume 5, pp. 166--169, 2022. DOI: 10.1109/lssc.2022.3180071
    Abstract: ... In this paper, a compact high-voltage (HV) transmit circuit for dense 2D transducer arrays used in 3D ultrasonic imaging systems is presented. Stringent area requirements are addressed by a unipolar pulser with embedded transmit/receive switch. Combined with a capacitive HV level shifter, it forms the ultrasonic HV transmit circuit with the lowest reported HV transistor count and area without any static power consumption. The balanced latched-based level shifter implementation makes the design insensitive to transients on the HV supply caused by pulsing, facilitating application in probes with limited local supply decoupling, such as imaging catheters. Favorable scaling through resource sharing benefits massively arrayed architectures while preserving full individual functionality. A prototype of 8 x 9 elements was fabricated in TSMC 0.18 μm HV BCD technology and a 160 μm x 160 μm PZT transducer matrix is manufactured on the chip. The system is designed to drive 65 V peak-to-peak pulses on 2 pF transducer capacitance and hardware sharing of 6 elements allows for an area of only 0.008 mm2 per element. Electrical characterization as well as acoustic results obtained with the 6 MHz central frequency transducer are demonstrated.

  2. Imaging Scheme for 3-D High Frame Rate Intracardiac Echography: a Simulation Study
    M. Soozande; B. Ossenkoppele; Y. Hopf; M. Pertijs; M. Verweij; N. de Jong; H. Vos; J. Bosch;
    IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
    2022. early access. DOI: 10.1109/TUFFC.2022.3186487
    Abstract: ... Atrial fibrillation is the most common cardiac arrhythmia, and normally treated by RF ablation. Intracardiac echography (ICE) is widely employed during RF ablation procedures to guide the electrophysiologist in navigating the ablation catheter, although only 2-D probes are currently clinically used. A 3-D ICE catheter would not only improve visualization of the atrium and ablation catheter, it might also provide 3-D mapping of the electromechanical wave propagation pattern, which represents the mechanical response of cardiac tissue to electrical activity. The detection of this electromechanical wave needs 3-D high frame rate imaging, which is generally only realizable in trade-off with channel count and image quality. In this simulation-based study, we propose a high volume rate imaging scheme for a 3-D ICE probe design that employs 1-D micro-beamforming in elevation direction. Such probe can achieve a high frame rate while reducing the channel count sufficiently for realization in a 10-Fr catheter. To suppress the grating-lobe artifacts associated with micro-beamforming in elevation direction, a limited number of fan-shaped beams with a wide azimuthal and narrow elevational opening angle are sequentially steered to insonify slices of the region of interest. An angular weighted averaging of reconstructed sub-volumes further reduces the grating lobe artifacts. We optimize the transmit beam divergence and central frequency based on the required image quality for electromechanical wave imaging (EWI). Numerical simulation results show that a set of 7 fan-shaped transmission beams can provide a frame rate of 1000 Hz and a sufficient spatial resolution to visualize the electromechanical wave propagation on a large 3-D surface.

  3. A Pitch-Matched ASIC with Integrated 65V TX and Shared Hybrid Beamforming ADC for Catheter-Based High-Frame-Rate 3D Ultrasound Probes
    Y. Hopf; B. Ossenkoppele; M. Soozande; E. Noothout; Z. Y. Chang; C. Chen; H. J. Vos; J. G. Bosch; M. D. Verweij; N. de Jong; M. A. P. Pertijs;
    In Dig. Techn. Papers IEEE International Solid-State Circuits Conference (ISSCC),
    February 2022. DOI: 10.1109/ISSCC42614.2022.9731597
    Abstract: ... With applications moving to 3D imaging, catheter-based ultrasound probes need to reach a new level of integration. This paper presents the first chip to combine high-voltage transmitters, analog front-ends, micro-beamforming, digitization and transducers, enabling high-frame-rate 3D imaging. Its pitch-matched architecture, made possible by a shared SAR/slope ADC that is 4x smaller and consumes 1.5x less power than the prior art, makes it a scalable solution for future digital imaging catheters.

  4. Transceiver ASIC Design for High-Frame-Rate 3D Intracardiac Echocardiography
    Yannick M. Hopf; Boudewine Ossenkoppele; Mehdi Soozande; Emile Noothout; Zu-Yao Chang; Chao Chen; Hendrik J. Vos; Johan G. Bosch; Martin D. Verweij; Nico de Jong; Michiel A. P. Pertijs;
    In Proc. IEEE International Ultrasonics Symposium (IUS),
    2022.

  5. A Pitch-Matched ASIC with Integrated 65V TX and Shared Hybrid Beamforming ADC for Catheter-Based High-Frame-Rate 3D Ultrasound Probes
    Yannick Hopf; Michiel Pertijs;
    In Annual Workshop on Circuits, Systems and Signal Processing (ProRISC),
    July 2022. Best presentation award.

  6. A Compact Integrated High -Voltage Pulserfor 3D Miniature Ultrasound Probes
    Yannick Hopf; Mehdi Soozande; Boudewine Ossenkoppele; Hendrik J. Vos; Martin D. Verweij; Johan G. Bosch; Nico de Jong; Michiel A. P. Pertijs;
    In Annual Workshop on Circuits, Systems and Signal Processing (ProRISC),
    July 2021. poster.

  7. Feasibility of High Frame Rate 3-D Intracardiac Echography using Fan-Beam Transmissions
    M. Soozande; B. Ossenkoppele; Y. Hopf; M. A. P. Pertijs; M. D. Verweij; H. J. Vos; J. G. Bosch; N. de Jong;
    In Proc. IEEE International Ultrasonics Symposium (IUS),
    IEEE, pp. 1-4, October 2019.

BibTeX support

Last updated: 5 Jun 2018