Agenda

ME colloquium

Extreme III-V’s and Wide bandgap Semiconductors: Hall Sensors and Photoconductive Switches

Karen Dowling

Through my research career, I have worked with various wide bandgap and III-V materials to create sensors and opto-electronic power devices. High electron mobility is desirable for high performing, high precision sensors and low on-resistance in power devices. In this talk, I will present two concepts that leverage unique device operation regimes. First, I will highlight my previous work on GaN 2DEG Hall-effect magnetometers at Stanford University. Here, the 2DEG heterostructure enables high mobility which corresponds to higher sensitivity, operation as high as 600C, and lower offset compared to state-of-the-art silicon devices. Next, I will highlight my creation of the first pulse compression photoconductive semiconductor switch (PCPS), a GaAs based opto-electronic device which leverages electric fields beyond saturation in materials that showcase negative differential mobility (NDM). This unique device operation regime is promising for high voltage, sub-ns pulse generation for RF and power device drivers. Finally, I will conclude with my new projects in the pipeline at TU Delft: GaN current sensing and single-device 3D Hall effect sensors, and my future directions into ultra-wide bandgap materials.

Additional information ...

Overview of Microelectronics Colloquium