Visits:442203

Smart Temperature Sensor Survey

This is a survey of the performance of smart temperature sensors published between 1989 and the present. Excel Spreadsheet (Rev 30062017, last updated June 30, 2017)

For use in publications and presentations please cite this survey as follows:
K.A.A. Makinwa, "Smart Temperature Sensor Survey", [Online]. Available: http://ei.ewi.tudelft.nl/docs/TSensor_survey.xls

The following paper motivates the figure of merit used in the survey and gives an overview of the different types of smart temperature sensors:
K.A.A. Makinwa, “Smart Temperature Sensors in Standard CMOS,” (Proc. Eurosensors) Procedia Engineering, pp. 930 – 939, Sept. 2010. pdf

Selected papers on Temperature sensors

  1. S. Pan, Y. Luo, S.H. Shalmany, and K.A.A. Makinwa, “A Resistor-Based Temperature Sensor with a 0.13pJ·K2 Resolution FOM,” Digest ISSCC, Feb. 2017. pdf
  2. B. Yousefzadeh and K.A.A. Makinwa, “A BJT-Based Temperature Sensor with a Packaging-Robust Inaccuracy of ±0.3°C (3s) from -55°C to +125°C After Heater-Assisted Voltage Calibration,” Digest ISSCC, Feb. 2017. pdf
  3. G. Wang, A. Heidari, K.A.A. Makinwa, G.C.M. Meijer, "An accurate BJT-based CMOS temperature sensor with Duty-Cycle-Modulated output," IEEE Transactions on Industrial Electronics, vol. PP, is. 99, Sep. 2016, doi. 10.1109/TIE.2016.2614273. pdf
  4. B. Yousefzadeh, S. H. Shalmany and Kofi A. A. Makinwa, “A BJT-based Temperature-to-Digital Converter with ±60mK Inaccuracy from -70°C to +125°C in 160nm CMOS,” vol. 52, is. 4, J. Solid-State Circuits, 2017. pdf
  5. P. Park, D. Ruffieux, K. Makinwa, “A Thermistor-Based Temperature Sensor for a Real-Time Clock With ±2 ppm Frequency Stability,” J. Solid-State Circuits, vol. 50, is. 7, pp. 1571 - 1580, April 2015. pdf
  6. K. Souri, Y. Chae, F. Thus, K. Makinwa, “A 0.85V 600nW all-CMOS temperature sensor with an inaccuracy of ±0.4°C (3σ) from -40 to 125°C ,” Digest ISSCC, pp. 222-223, Feb. 2014. pdf
  7. M. Shahmohammadi, K. Souri and K.A.A. Makinwa, “A Resistor-Based Temperature Sensor for MEMS Frequency References,” Proc. ESSCIRC, pp. 225 – 228, Sept. 2013. pdf
  8. A.L. Aita, M.A.P. Pertijs, K.A.A. Makinwa, J.H. Huijsing and G.C.M. Meijer, “A Low-Power CMOS Smart Temperature Sensor with a Batch-Calibrated Inaccuracy of ±0.25°C (±3σ) from –70° to 130°C,” vol. 13, is. 5, IEEE Sensors J., pp. 1840 – 1848, May 2013. pdf
  9. K. Souri, Y. Chae and K.A.A. Makinwa, “A CMOS Temperature Sensor With a Voltage-Calibrated Inaccuracy of ±0.15°C (3s) From -55 to 125°C,” J. Solid-State Circuits, vol. 47, is. 12, Jan. 2013. pdf
  10. C.P.L. van Vroonhoven and K.A.A. Makinwa “An SOI Thermal-Diffusivity-Based Temperature Sensor with ±0.6°C (3σ) Untrimmed Inaccuracy from -70°C to 225°C,” Sensors and Actuators A, vol. 188, pp. 66–74, Dec. 2012. pdf
  11. C.P.L. van Vroonhoven and K.A.A. Makinwa, “Thermal Diffusivity Sensing: A New Temperature Sensing Paradigm”, Proc. CICC, Sept. 2011. pdf
  12. K. Souri and K.A.A. Makinwa, “A 0.12mm2 7.4μW Micropower Temperature Sensor with an Inaccuracy of 0.2°C (3-Sigma) from -30°C to 125°C,” J. Solid-State Circuits, vol. 46, is. 7, pp. 1693 - 1700, July 2011. pdf
  13. F. Sebastiano, L.J. Breems, K.A.A. Makinwa, S. Drago, D. Leenaerts, B. Nauta, “A 1.2V 10mW NPN-Based Temperature Sensor in 65nm CMOS with an inaccuracy of ±0.2°C from –70°C to 125°C,” J. Solid-State Circuits, vol. 45, is. 12, pp. 2591 – 2601, Dec. 2010. pdf
  14. K.A.A. Makinwa, “Smart Temperature Sensors in Standard CMOS,” (Proc. Eurosensors) Procedia Engineering, pp. 930 – 939, Sept. 2010. pdf
  15. M.A.P. Pertijs, A.L. Aita, K.A.A. Makinwa and J.H. Huijsing, “Low-Cost Calibration Techniques for Smart Temperature Sensors,” IEEE Sensors Journal, vol. 10, is. 6, pp. 1098 – 1105, June 2010. pdf
  16. C.P.L. van Vroonhoven and K.A.A. Makinwa, “A Thermal-Diffusivity-Based Temperature Sensor with an Untrimmed Inaccuracy of ±0.2°C (3σ) from –55 to 125°C,” Digest ISSCC, pp. 314 – 315, Feb. 2010. pdf
  17. M. Kashmiri, S. Xia and K.A.A. Makinwa, “A Temperature-to-Digital Converter Based on an Optimized Electrothermal Filter,” J. Solid-State Circuits, vol. 44, is. 7, pp. 2026 – 2035, July 2009. pdf
  18. C.P.L. van Vroonhoven and K.A.A. Makinwa, “A CMOS Temperature-to-Digital Converter with an Inaccuracy of ±0.5°C (3σ) from –55 to 125°C,” Digest ISSCC, pp. 576 - 577, Feb. 2008. pdf
  19. K.A.A. Makinwa and M.F. Snoeij, “A CMOS temperature-to-frequency converter with an inaccuracy of ±0.5°C (3s) from –40 to 105°C,” J. Solid-State Circuits, vol. 41, is. 12, pp. 2992 – 2997, Dec. 2006. pdf
  20. M.A.P. Pertijs, K.A.A. Makinwa and J.H. Huijsing, “A CMOS temperature sensor with a 3s inaccuracy of ±0.1°C from -55°C to 125°C,” J. Solid-State Circuits, vol. 40, is. 12, pp. 2805 – 2815, Dec. 2005. pdf